National Association of Regulatory Utility Commissioners (NARUC)

Washington, D.C. Feb 28th, 2001

LEOS Leak Detection and Location System

Presented by Peter W. Bryce, P.Eng.
Brytech Consulting Inc.
Basic principles of LEOS

Task
- Detection, localization of leaks and assessment of leak rate in pipelines, tanks and waste deposits

Physical basis
- Transportation of leaking material according to diffusion process

Measuring technique
- Permeable and pressure-tight sensor tube along the component to monitored
- Central measuring system including a pump and sniffing gas detectors

Evaluation parameters
- Measuring of the gas concentration collected in the sensor tube as a function of the pumping time
 - **Leak detection:** crossing of gas concentration above a threshold (detection time)
 - **Leak location:** detection time multiplied by the measured gas flow velocity
 - **Analysis:** gas probe analysis, pattern recognition methods by neural networks using up to 7 sensors
Diffusion around the Pipe - Phase 1

LEOS (Leak- and Location System)
Diffusion around the Pipe - Phase 2

LEOS (Leak- and Location System)
Diffusion around the Pipe - Phase 3

LEOS (Leak- and Location System)
Diffusion around the Pipe - Phase 4

LEOS (Leak- and Location System)
Diffusion around the Pipe - Phase 5

LEOS (Leak- and Location System)
LEOS (Leak- and Location System)
Structure of Sensor Tube

- Perforated gas transport tube of modified hard PVC *
- Protective braiding of thin PE strips
- Diffusion Layer of EVA

*) alternative materials for special applications:
- PP (polypropylene)
- PVDF (polyvinylidenfluoride)

LEOS (Leak- and Location System)
LEOS (Leak Detection and Location System)
LEOS capabilities

Detectable materials
- All types of carbonates such as propan, crude oil, petrol, halogenized hydrocarbons, alcohols, ester, ether, ketones
- Anorganic gases (hydrogen, ammonia)

Detection limits
- Sensor tube: $\leq 10 \mu l / l$ for fluids
- $\leq 5 \text{ ml} / l$ for gases
- Leaking material: $\leq 1 l / h$ for fluids
- $< 0.1 \text{ m}^3 / h$ for gases

Monitoring length / area
- For each measuring system: pipeline: 15 km (up to 50 km for methan)
- Waste deposits: $< 100 \text{ ha} (\leq 35 \text{ km})$

Location accuracy:
- Better than $\pm 25 \text{ m}$ for 5 km ($\leq 0.5 \%$)

Response time:
- Normal application: 24h
- Special gas application: $\geq 0.5h$ (for short distances)

Evaluation:
- Automatic leak alarm
- Trending of leak indication
- Identification of leaking material

LEOS (Leak Detection and Location System)
LEOS Reference Location Plot
High Background of Methane at Selected Positions

LEOS (Leak- and Location System)
LEOS Reference Measurement
Low Background at VTG (BP) Pipeline Bundle

LEOS (Leak- and Location System)
LEOS (Location System)
LEOS 2.21-Veba Oel AG-Messstation-Nr.1-Brösweg

| Datei | Vorbelegen | Überwachen | Analyse | Diagnose | Fenster | Hilfe |

| K6 - M 919 - RR - Str.Nr.1 |

- * 1 mV

methan-unempfindlicher Sensor

| K1 - M 919 - RR - Str.Nr.1 |

- * 0.10 V

methan-empfindlicher Sensor
LEOS Location Plot
Influence of Sensor Type and Filter Algorithm

LEOS (Leak- and Location System)
Pipeline monitoring with central computer

LEOS (Leak- and Location System)
<table>
<thead>
<tr>
<th>Location</th>
<th>Year</th>
<th>Company, Location</th>
<th>Medium Transports</th>
<th>Piping Length</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater Protection Area</td>
<td>1978</td>
<td>BASF AG, Ludwigshafen</td>
<td>Ethylene C_2H_4</td>
<td>4 km</td>
<td>above groundwater level, sensor tube lies beside pipe</td>
</tr>
<tr>
<td>Rhine River Crossing /Foreshore</td>
<td>1978</td>
<td>BASF AG, Ludwigshafen</td>
<td>Ethylene C_2H_4</td>
<td>2 x 1.5 km</td>
<td>sensor tube at 12 o’ clock in Rhine River bed, in a depth of 24 m from the maximum water level</td>
</tr>
<tr>
<td>Piping Bundle in Rhine Foreshore</td>
<td>1983</td>
<td>Wintershall AG, Mannheim</td>
<td>Pentane and nonane cut, benzene, aviation fuel,</td>
<td>2 x 1.5 km</td>
<td>sensor tube at 12 o’ clock in Rhine River bed, in a depth of 24 m from the maximum water level</td>
</tr>
<tr>
<td>Chemical Storage Facility</td>
<td>1987</td>
<td>Cable Factory, Coburg</td>
<td>Ketone, mixed solvents, oil etc</td>
<td>225 m 3</td>
<td>sensor tube laid in ducts below building</td>
</tr>
</tbody>
</table>

LEOS (Leak- and Location System)
Track Report on Monitoring Function / Field Experience

| LEOS in operation **since 1978** |
| Small leaks at valves during pipeline operation |
| **No leak undetected** including field tests |
| **Approved system for water protection** in Germany |
| **Methane emissions** from natural organic processes |
| Other background emissions from **industrial pollutants** |

LEOS (Leak- and Location System)
BSL Pipeline System - MS1 Kösterbeck

LEOS (Leak- and Location System)

Propane indication at x = 432 m (5° position)

Propane indication at x = 1590 m (1° position)
System Experience

- **100% reliability** of installed sensor tube buried in soil or water
- Highly reliable *electronic components*
- *Automatic* monitoring with specified capabilities
- Low equipment *maintenance*
- *Measurement Module* allows simple system adaptation to monitor loop or radial systems, (up to 8 monitoring lines for each module)

LEOS (*Leak- and Location System*)
BPXA Northstar Project

Stipulation of U.S. Army Corps of Engineers:
“oil spill leak detection system“

Design Basis: 15 years, plus
- 6 miles subsea oil pipeline
- water depth 0 to 39 ft, burial depth 5 to 11 ft
- 60 °F operating temperature
- ambient air temperature during construction: -50°F
- high salinity

Sensitivity: < 1 bbl/day (32.5 bbl/day requested)

Performance requirements:
- no false alarms
- robust to survive installation and long-term operation

LEOS (Leak- and Location System)
Main LEOS Components of Northstar Project

TPG (shore crossing) 6 mile LEOS sensor tube and armor tube MS (Seal Island)

Sensor tube (15 mm OD 0.8 mm WT)

Protective PE-X tube (50 mm OD 6.9 mm WT)

Twin 10 inch dia. steel pipes

LEOS (Leak- and Location System)
Construction - Protection during Installation

Impact and abrasion resistance
- Sensor hose installed in a protective PE-X perforated tube
- Sensor hose and PE-X assembly delivered in 300 m (1,000-ft) coils
- Splice and repair can be made in the field

Low ambient temperature application
- Modified inner sensor tube made from PVDF

Installation QAQC
- Pressure tests of the sensor hose after each relevant step
- Final pressure test of the complete monitoring line

LEOS (Leak- and Location System)
LEOS (Leak- and Location System)
LEOS (Leak- and Location System)
LEOS (Leak- and Location System)