National Association of Regulatory Utility Commissioners (NARUC)

Washington, D.C. Feb 28th, 2001

LEOS Leak Detection and Location System

Presented by Peter W. Bryce, P.Eng. Brytech Consulting Inc.

SIEMENS

Basic principles of LEOS

Diffusion around a pipe (2-dimensional Model)

Structure of Sensor Tube

SIEMENS

Mode of Operation

LEOS (Leak Detection and Location System)

SIEMENS

LEOS capabilities

LEOS (Leak Detection and Location System)

LEOS Reference Location Plot High Background of Methane at Selected Positions

LEOS Reference Measurement Low Background at VTG (BP) Pipeline Bundle

LEOS Location Plot Influence of Sensor Type and Filter Algorithm

SIEMENS

Pipeline monitoring with central computer

F 09/94-00 LEOS_02E.DRW

LEOS (leak detection and location system)

 Groundwater Protection Area
 1978
 BASF AG, Ludwigshafen

 Medium transported:
 Ethylene C2 H4
 Piping length:
 4km

 Configuration:
 above groundwater level, sensor tube lies beside pipe

BASF AG, Ludwigshafen

•	

Medium stored: Ketone, mixed solvents, oil etc monitored area: 225 m³

Configuration: sensor tube laid in ducts below building

Rhine River Crossing /Foreshore 1978

Track Report on Monitoring Function / Field Experience

- LEOS in operation *since 1978*
- *Small leaks* at valves during pipeline operation
- No leak undetected including field tests
- *Approved system for water protection* in Germany
- *Methane emissions* from natural organic processes
- Other background emissions from *industrial pollutants*

BSL Pipeline System - MS1 Kösterbeck

System Experience

- 100 % reliability of installed sensor tube buried in soil or water
- Highly reliable *electronic components*
- *Automatic* monitoring with specified capabilities
- Low equipment *maintenance*
- Measurement Module allows simple system adaptation to monitor loop or radial systems, (up to 8 monitoring lines for each module)

BPXA Northstar Project

Stipulation of U.S. Army Corps of Engineers: "oil spill leak detection system" Design Basis: 15 years , plus 6 miles subsea oil pipeline water depth 0 to 39 ft, burial depth 5 to 11 ft 60 °F operating temperature ambient air temperature during construction : - 50°F high salinity

Sensitivity: <1 bbl/day (32.5 bbl/day requested)

Performance requirements:

no false alarms

robust to survive installation and long-term operation

Main LEOS Components of Northstar Project

Construction - Protection during Installation

Impact and abrasion resistance

- Sensor hose installed in a protective PE-X perforated tube
- Sensor hose and PE-X assembly delivered in 300 m (1,000-ft) coils
- Splice and repair can be made in the field

Low ambient temperature application

• Modified inner sensor tube made from PVDF

Installation QAQC

- •Pressure tests of the sensor hose after each relevant step
- •Final pressure test of the complete monitoring line

